Grant Henderson
University of Toronto
Department of Earth Sciences
22 Ursula Franklin St., Toronto
Ontario, Canada M5S 3B1
Tel.: 416 978 6041
Fax.: 416 978 3938
E-mail: henders@es.utoronto.ca
Research Interests: Structure of glasses, melts and amorphous materials.
Magmas are generally considered to be mixtures of silicate melt, crystalline products and evolved fluids and gases. Studies of the structure of the silicate melt phase is an area of geological research that has been ongoing since the 30s and continues to be an area of intense interest for several large research groups in Japan, USA, England, France, Germany, Italy, and Australia. This melt phase is widely acknowledged to play an important role in igneous processes because the physical and chemical behaviour of natural magmas is related to melt structure (cf., October issue of Elements by Henderson et al., 2006: Cover page shown on left). For example, volcanic eruptive styles are dependent upon the viscosity of the eruptive magma and the viscosity is in turn directly related to the structure of the melt within the magma. While in-situ studies at temperature and pressure are most desirable, it is easier, for technical reasons, to use quenched melts or glasses as analogues. This is because glasses are considered to have structures that resemble the liquid state, and as glasses are solid, experimental data can be extracted more easily (e.g., at room temperature) than from molten analogues. A benefit from this approach is that not only has our understanding of melt structure improved, but so has our understanding of the structure of glasses; the latter having numerous technological applications. The long term objective of my research is to develop a comprehensive understanding of melt structure, its response to changes in temperature and pressure (e.g., Poe et al, 2004), and be able to use this information to predict the behaviour of natural melts and magmas. Simple compositions (Na2O-SiO2 for example) are prepared and melted at high temperature then rapidly quenched to glass. The glasses produced have properties that are closely analogous to the corresponding melt. These glasses are then interrogated with sophisticated instrumentation (Raman spectroscopy, Synchrotron based techniques such as EXAFS/XANES), and analysis of the spectroscopic data provides key information with which to interpret the speciation, structure and coordination of the silicate glasses. By establishing how composition affects the structural properties of the synthetic melts it is possible to establish a basis upon which one can develop structural models of more complex natural melt systems.
Some recent publications.
February 2014: Reviews in Mineralogy and Geochemistry Volume 78: Spectroscopic methods in Mineralogy and Materials sciences
Watch this space for RiMG Vol 86: Magmas, melts and glasses, D.R. Neuville, G.S. Henderson, D.M. DIngwell (eds) coming Spring 2021.
2020
Moulton BJA, Henderson GS (2020) Glasses: Alkali and Alkaline-earth Silicates, chapter in Encyclopedia of Materials: Technical ceramics and glasses, ~30pp, Elsevier, in press.
H Wayne Nesbitt, Henderson G.S., G. Michael Bancroft (2020) Spectral resolution and Raman Q3 and Q2 cross sections in 40 mol% Na2O glasses, Chemical Geology (invited), in press.
H Wayne Nesbitt, G. Michael Bancroft, Henderson G.S., (2020) SN Reaction Mechanisms: an Atomic-Molecular Perspective on Chemical Speciation and Transport Properties in Silicate Melts, Chemical Geology (invited), 555, 119818.
H Wayne Nesbitt, G. Michael Bancroft, Henderson G.S., (2020) Nucleophilic Substitution Reaction Mechanisms Polymerization Reactions, and their Effects on Si and O Chemical Speciation in Na2O-SiO2 Melts, Submitted to Geochimica Cosmochimica acta, under revision.
Neuville DR, Henderson G.S., Dingwell DM., eds. (2020), Magmas, melts, glasses and liquids: Experimental approaches, Volume 86 of Reviews in Mineralogy and Geochemistry ~1000pp, in press.
Henderson G.S, Stebbins J.F., (2020), Short-range order and structure, Reviews in Mineralogy and Geochemistry, 86, Magmas, melts, glasses and liquids: Experimental approaches, ~55pp, in press.
H Wayne Nesbitt, G. Michael Bancroft, Henderson GS., (2020),Polymerization during melting of ortho- and meta-silicates: Effects on Q species stability, heats of fusion, and redox state of mid-ocean range basalts (MORBs), American Mineralogist, 105, 716-726.
*O’Shaughnessy, C., Henderson G.S., H. Wayne Nesbitt, G Michael Bancroft, Neuville, D.R., (2020), The influence of modifier cations on the Raman stretching modes of Qn species in alkali silicate glasses, Journal of the American Ceramics Society (invited), 103, 3991-4001.
Cocconi, Maria Rita, Le Losq Charles, Henderson Grant S., Moretti Roberto, Neuville Daniel R (2020), The redox behaviour of REE elements, Chapter 11, AGU Geophysical Monograph “Redox Magma Geochemistry” edited by Daniel R. Neuville (IPGP, France) and Roberto Moretti (IPGP, France), in press.
2019
*Moulton, B.J.A., Henderson, G.S., de Ligny, D., Martinet, C., Martinez, V., *Sonneville, C., (2019), Structure-longitudinal sound velocity relationships in anorthite (CaAl2Si2O8) composition glass up to 20 GPa: An in-situ Raman and Brillouin spectroscopy study, Geochimica Comochimica acta, 261, 132-144.
*Sonneville C, Florian P., Le Losq, C., Martinet C, Champagnon B., Le Floch S., Henderson G.S., Neuville, D.R., (2019), An 27Al and 23Na solid state NMR and Raman study of densified sodium aluminosilicate glasses, Journal of Chemical Physics, submitted.
Nesbitt, H.W., *O’Shaughnessy, C., Henderson, G.S., Bancroft, G.M., (2019), Factors affecting line shapes and intensities of Q3 and Q4 Raman bands of Cs glasses, Chemical Geology, 505, 1-11.
2018
Bancroft, G.M., Nesbitt, H.W., Henderson, G.S., *O’Shaughnessy, C., Withers, A.C., Neuville, D.R., (2018), Lorentzian dominated lineshapes and linewidths for Raman symmetric stretch peaks (800-1200 cm-1) in Qn (n=1-3) species of alkali silicate glasses/melts, Journal of Non-crystalline Solids, 484, 72-83.
*O’Shaughnessy, C., Henderson G.S., *Moulton B.J., Zuin, L., Neuville, D.R., (2018), A Li K-edge XANES study of salts and minerals, Journal of Synchrotron Radiation, 25, 1-9.
Nesbitt, H.W., Bancroft, G.M., Henderson, G.S., (2018), Temperature dependence of Raman shifts and linewidths for Q0 and Q2 crystals of silicates, phosphates and sulfates, American Mineralogist, 424, 72-83.
2017
Nesbitt, H.W., Cormack, A.N., Henderson, G.S., (2017), Effect of defect formation on the heat capacities and stabilities of some chain, ring and sheet silicates, American Mineralogist, 102, 2220-2229.
Nesbitt, H.W., Bancroft, G.M., Henderson, G.S., Richet, P., *O’Shaughnessy, C., (2017) Silicate mineral melting, crystallization and the glass transition: Toward a unified description for silicate phase transitions, American Mineralogist, 102, 412-420.
*O’Shaughnessy, C., Henderson, G.S., Nesbitt, H.W., Bancroft, G.M., Neuville, D.R., (2017) The structure of cesium silicate glasses and liquids, Chemical Geology, 461, 82-95.
Nesbitt, H.W.,Henderson, G.S., Bancroft, G.M., *O’Shaughnessy, C., (2017) Electron densities over Si and O atoms of tetrahedral and their impact on Raman stretching frequencies and Si-NBO force constants, Chemical Geology, 461, 65-74.
Nesbitt, H.W., Henderson, G.S., Bancroft, G.M., *Sawyer, R., Secco, R.A., (2017) Bridging oxygen speciation in K-silicate glasses and melts, with implications for spectroscopic studies and glass structure, Chemical Geology, 461, 13-22.
2016
*Moulton, B.J.A., Henderson, G.S., *Sonneville, C.,*O’Shaughnessy, Ca., Zuin, L., Regier, T., de Ligny, D., (2016) The structure of haplobasaltic glasses investigated using X-ray absorption near edge structure (XANES) spectroscopy at the Si, Al, Mg, and O K-edges and Ca, Si and Al L2,3-edges, Chemical Geology, 420, 213-230.
*Moulton, B.J.A., Henderson, G.S., Fukui, H., Hiraoka, N., de Ligny, D., *Sonneville, C., Kanzaki, M., (2016), In-situ structural changes of amorphous diopside (CaMgSi2O6) up to 20 GPa: A Raman and O K-edge X-ray Raman spectroscopic study, Geochimica Cosmochimica acta, 178, 41-61.
Henderson GS, (2016), Structural Probes, 25 pp., Chapter 4-1 of “Encyclopedia of Glass Science, Technology, History, and Culture”, P. Richet ed., Wiley, ~1000 pp, in press, expected publication date, October, 2019.
2015
Nesbitt H.W., Bancroft, G.M., Henderson, G.S., Sawyer, R, Secco R., (2015), Direct and Indirect Evidence for Free Oxygen (O2-) in MO-Silicate Glasses, American Mineralogist, 100,2566-2578.
Nesbitt H.W., Henderson, G.S., Bancroft, G.M., Ho, R., (2015), Experimental evidence for Na coordination to bridging oxygen in Na-silicate glasses: Implications for spectroscopic studies and for the modified random network model, Journal of Non-crystalline solids, 409, 139-148.
2014
Henderson G.S., Neuville, D.R., Downs, R.T., eds, (2014) Spectroscopic methods in Mineralogy and Materials Sciences, Reviews in Mineralogy and Geochemistry Vol 78, 800pp.
Henderson, G.S., de Groot, F.M.F., Moulton, B.J.A., (2014) X-ray Absorption Near-Edge Structure (XANES) spectroscopy, Chapter 3, Reviews in Mineralogy and Geochemistry, 78, 75-138.
Neuville, D.R., De Ligny, D., Henderson G.S., (2014) Advances in Raman spectroscopy applied to Earth and materials sciences, Chapter 13, Reviews in Mineralogy and Geochemistry, 78, 509-549.
Le Losq, C., Neuville, D.R., Florian, P., Henderson, G.S., Massiot, D., (2014), The role of Al3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts, Geochimica Cosmochimica Acta, 126, 495-517.
2013
Smythe, D.J., Brenan, J.M., Bennett, N.R., Regier, T., Henderson, G.S. (2013) Quantitative determination of cerium oxidation states in alkali-aluminosilicate glasses using M4,5-edge XANES, Journal of Non-crystalline Solids, 278, 258-264.
Sonneville, C., De Ligny, D., Mermet, A., Champagnon, B., Martinet, C., Henderson, G.S., Deschamp, T., Margueritat, J., Barthel, E. (2013) In situ Brillouin study of sodium alimino silicate glasses under pressure, Journal of Chemical Physics, 139, 074501.
Patzig, C., Höche, T., Hu, Y., Ikeno, H., Krause, M., Dittmer, M., Gawronski, A., Rüssel C., Tanaka, I. Henderson G.S., (2013) Zr coordination change during crystallization of MgO-Al2O3-SiO2-ZrO2 glass ceramics, Journal of Non-crystalline Solids, 384, 47-54.
Höche, T., Ikeno, H., Mäder, M., Henderson G.S., Blyth, R.I.R., Sales, B.C., Tanaka, I. (2013), Vanadium L2,3 XANES experiments and first principles multielectron calculations: Impact of second-nearest neighbouring cations on Vanadium-bearing Fresnoites, American Mineralogist, 97, 665-670.
2012
LeLong, G., Cormier, L., Ferlat, G., Giordano, V., Henderson, G.S., Shukla, A., Calas, G., (2012), Evidence of five-fold coordinated Ge atoms in amorphous GeO2 under pressure using Inelastic X-ray Scattering, Physical Review B., 85, 134202.
Cochain, B., Neuville, D.R., Henderson G.S., McCammon, C., Pinet, O., Richet, P. (2012) Iron content, redox state and structure of sodium borosilicate glasses: A Raman, Mossbauer and boron K-edge XANES spectroscopy study, Journal of the American Ceramics Society, 95, 962-971.
2011
Cormier, L., Dargaud, O., Menguy, N. Henderson, G.S., Guinard, M., Nicolas, T., (2011) Investigation of the role of nucleating agent in MgO-SiO2-Al2O3-SiO2-TiO2 glasses and glass-ceramics: a XANES study at the Ti K- and L2,3-edges,Crystal Growth and Design, 11, 311-319.
Höche, T., Mäder, M., Bhattacharyya, S., Henderson, G.S., Gemming, T., Wurth, R., Russel, C., Avramov, I., (2011). ZrTiO4 crystallisation in nanosized liquid-liquid phase separation droplets in glass – A quantitative XANES study, CrystEngComm, 13, 2550-2556.
Nesbitt H.W., Bancroft, G.M., Henderson, G.S., Ho, R., Dalby, K.N., Huang, Y., Yan, Z., (2011), Bridging, Non-Bridging and Free (O2-) Oxygen in Na2O-SiO2 Glasses: An X-ray Photoelectron Spectroscopic (XPS) and Nuclear Magnetic Resonance (NMR) Study, Journal Non-crystalline Solids, 357, 170-180.
2010
Richet, P., Henderson, G.S., Neuville, D.R. (2010) Thermodynamics: The oldest branch of Earth Science?. Elements, 6, 287-292.
Henderson, G.S., Soltay, L.G., Wang, H.M., (2010), Q speciation in alkali germanate glasses, Journal of Non-crystalline Solids, 356, 2480-2485.
Neuville D.R., Henderson G.S., Cormier L., Massiot D. (2010) Structure of CaO-Al2O3 crystal, glasses and liquids, using X-ray absorption at Al L and K edges and NMR spectroscopy, American Mineralogist, 95, 1580-1589.
Some interesting oddities:
Sokolov, I.Y., and Henderson, G.S., (2000), The height dependence of the image contrast mechanism when imaging in non-contact AFM, Surface Science Letters, 464, L745-L751., 267-272.
Sokolov, I.Y., and Henderson, G.S., (2000), Atomic resolution imaging using the EDL technique: Friction versus Height Contrast Mechanisms, Applied Surface Science, 157, 302-307.
Sokolov, I.Y., Henderson, G.S., and Wicks, F.J., (2000), Model dependence of simulations in AFM contact mode, Surface Science, 457, 267-272.
Sokolov, I.Y., Henderson, G.S., and Wicks, F.J., (1999), Pseudo Non-Contact AFM imaging? Applied Surface Science, 140, 362-365.
Sokolov, I.Yu., Henderson, G.S., and Wicks, F.J., (1999), Angstrom Resolution Imaging of the {001} Anhydrite Surface: Theoretical and Experimental Evidence for “True” Atomic Resolution, Journal of Applied Physics, 86, 5537-5540.
McConnell, J.C., and Henderson, G.S., (1993), Ozone depletion at polar sunrise, 89-103, in Tropospheric chemistry of ozone in the polar regions, ed., H Niki and K.H. Becker, NATO ASI series 1; Global Environmental Change, Vol 7., 425pp, Springer-Verlag.
McConnell, J.C., Henderson, G.S., Barrie, L., Bottenheim, J., Niki, H., Langford, C.H., and Templeton E.M.J., (1992), A new mechanism for Arctic O3 depletion at polar sunrise: Heterogeneous photochemical bromine production, Nature, 355, 150-152.
Henderson, G.S., McConnell, J.C., and Evans, W.F.J., (1990a), The effects of initial active chlorine concentrations on the Antarctic ozone spring depletion, Journal of Geophysical Research, 95, 1899-1908.
Henderson, G.S., McConnell, J.C., and Evans, W.F.J, (1990b), Model studies of the oxidation of light hydrocarbons in the troposphere and stratosphere, Atmosphere-Ocean, 28, 48-89.
Henderson, G.S., McConnell, J.C., and Evans, W.F.J., A comparison of model calculations and measurements of acetone in the troposphere and stratosphere. Journal of Atmospheric Chemistry, 8, 277-298, 1989.
Evans, W.F.J., Boville, B.W., McConnell, J.C., and Henderson, G.S., Simulation of the Antarctic ozone hole with chemical and dynamical effects. Geophysical Research Letters, 13, 1323-1326, 1986.