Grant Henderson

photo of grant henderson
University of Toronto
Department of Earth Sciences

22 Russell St., Toronto
Ontario, Canada M5S 3B1

Tel.:  416 978 6041
Fax.: 416 978 3938


Research Interests: Structure of glasses, melts and amorphous materials.

GHOctober Issue of Elements on melts and glassesMagmas are generally considered to be mixtures of silicate melt, crystalline products and evolved fluids and gases. Studies of the structure of the silicate melt phase is an area of geological research that has been ongoing since the 30s and continues to be an area of intense interest for several large research groups in Japan, USA, England, France, Germany, Italy, and Australia. This melt phase is widely acknowledged to play an important role in igneous processes because the physical and chemical behaviour of natural magmas is related to melt structure (cf., October issue of Elements by Henderson et al., 2006: Cover page shown on left). For example, volcanic eruptive styles are dependent upon the viscosity of the eruptive magma and the viscosity is in turn directly related to the structure of the melt within the magma. While in-situ studies at temperature and pressure are most desirable, it is easier, for technical reasons, to use quenched melts or glasses as analogues. This is because glasses are considered to have structures that resemble the liquid state, and as glasses are solid, experimental data can be extracted more easily (e.g., at room temperature) than from molten analogues. A benefit from this approach is that not only has our understanding of melt structure improved, but so has our understanding of the structure of glasses; the latter having numerous technological applications. The long term objective of my research is to develop a comprehensive understanding of melt structure, its response to changes in temperature and pressure (e.g., Poe et al, 2004), and be able to use this information to predict the behaviour of natural melts and magmas.  Simple compositions (Na2O-SiO2 for example) are prepared and melted at high temperature then rapidly quenched to glass. The glasses produced have properties that are closely analogous to the corresponding melt. These glasses are then interrogated with sophisticated instrumentation (Raman spectroscopy, Synchrotron based techniques such as EXAFS/XANES), and analysis of the spectroscopic data provides key information with which to interpret the speciation, structure and coordination of the silicate glasses. By establishing how composition affects the structural properties of the synthetic melts it is possible to establish a basis upon which one can develop structural models of more complex natural melt systems.

Some recent publications.

October 2010:  Everything you always wanted to know about thermodynamics but were too afraid to ask!











February 2014: Reviews in Mineralogy and Geochemistry Volume 78: Spectroscopic methods in Mineralogy and Materials sciences


IPGP Paris France 2016

IPGP Paris France 2016



*Moulton, B.J.A., Henderson, G.S. de Ligny, D., *Sonneville, C., Martinet, C., Martenez, V., (2017) Structure—primary wave velocity relationships in anorthite (CaAl2Si2O8) composition glass in situ up to 20 GPa: A Raman and Brillouin spectroscopy study, submitted to Journal of Chemical Physics.

*O’Shaughnessy, C., Henderson, G.S.,* Moulton B.J.A., Zuin, L., Neuville, D.R., (2017) A Li K-edge XANES study of salts and minerals, submitted to Journal of Synchrotron Radiation.

Nesbitt, H.W., Cormack, A.N., Henderson, G.S., (2017), Effect of defect formation on the heat capacities and stabilities of some chain, ring and sheet silicates, American Mineralogist, in press.

Nesbitt, H.W., Bancroft, G.M., Henderson, G.S., Richet, P., *O’Shaughnessy, C., (2017) Silicate mineral melting, crystallization and the glass transition: Toward a unified description for silicate phase transitions, American Mineralogist, 102, 412-420.

*O’Shaughnessy, C., Henderson, G.S., Nesbitt, H.W., Bancroft, G.M., Neuville, D.R., (2017) The structure of cesium silicate glasses and liquids, Chemical Geology, 461, 82-95.

Nesbitt, H.W., Henderson, G.S., Bancroft, G.M., *O’Shaughnessy, C., (2017) Electron densities over Si and O atoms of tetrahedral and their impact on Raman stretching frequencies and Si-NBO force constants, Chemical Geology, 461, 65-74.

Nesbitt, H.W., Henderson, G.S., Bancroft, G.M., *Sawyer, R., Secco, R.A., (2017) Bridging oxygen speciation in K-silicate glasses and melts, with implications for spectroscopic studies and glass structure, Chemical Geology, 461, 13-22.


 *Moulton, B.J.A., Henderson, G.S., *Sonneville, C., *O’Shaughnessy, Ca., Zuin, L., Regier, T., de Ligny, D., (2016) The structure of haplobasaltic glasses investigated using X-ray absorption near edge structure (XANES) spectroscopy at the Si, Al, Mg, and O K-edges and Ca, Si and Al L2,3-edges, Chemical Geology, 420, 213-230.

*Moulton, B.J.A., Henderson, G.S., Fukui, H., Hiraoka, N., de Ligny, D., *Sonneville, C., Kanzaki, M., (2016), In-situ structural changes of amorphous diopside (CaMgSi2O6) up to 20 GPa: A Raman and O K-edge X-ray Raman spectroscopic study, Geochimica Cosmochimica acta, 178, 41-61.

Henderson GS, (2016), Structural Probes, 25 pp., Chapter 4-1 of “Encyclopedia of Glass”, P. Richet ed., Wiley, ~1600 pp, in press.


Nesbitt H.W., Bancroft, G.M., Henderson, G.S., Sawyer, R, Secco R., (2015), Direct and Indirect Evidence for Free Oxygen (O2-) in MO-Silicate Glasses, American Mineralogist, 100,2566-2578.

Nesbitt H.W., Henderson, G.S., Bancroft, G.M., Ho, R., (2015), Experimental evidence for Na coordination to bridging oxygen in Na-silicate glasses: Implications for spectroscopic studies and for the modified random network model, Journal of Non-crystalline solids, 409, 139-148.


Henderson G.S., Neuville, D.R., Downs, R.T., eds, (2014) Spectroscopic methods in Mineralogy and Materials Sciences, Reviews in Mineralogy and Geochemistry Vol 78, 800pp.

Henderson, G.S., de Groot, F.M.F., Moulton, B.J.A., (2014) X-ray Absorption Near-Edge Structure (XANES) spectroscopy, Chapter 3, Reviews in Mineralogy and Geochemistry, 78, 75-138.

Neuville, D.R., De Ligny, D., Henderson G.S., (2014) Advances in Raman spectroscopy applied to Earth and materials sciences, Chapter 13, Reviews in Mineralogy and Geochemistry, 78, 509-549.

Le Losq, C., Neuville, D.R., Florian, P., Henderson, G.S., Massiot, D., (2014), The role of Al3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts, Geochimica Cosmochimica Acta, 126, 495-517.


Smythe, D.J., Brenan, J.M., Bennett, N.R., Regier, T., Henderson, G.S. (2013) Quantitative determination of cerium oxidation states in alkali-aluminosilicate glasses using M4,5-edge XANES, Journal of Non-crystalline Solids, 278, 258-264.

Sonneville, C., De Ligny, D., Mermet, A., Champagnon, B., Martinet, C., Henderson, G.S., Deschamp, T., Margueritat, J., Barthel, E. (2013) In situ Brillouin study of sodium alimino silicate glasses under pressure, Journal of Chemical Physics, 139, 074501.

Patzig, C., Höche, T., Hu, Y., Ikeno, H., Krause, M., Dittmer, M., Gawronski, A., Rüssel C., Tanaka, I. Henderson G.S., (2013) Zr coordination change during crystallization of MgO-Al2O3-SiO2-ZrO2 glass ceramics, Journal of Non-crystalline Solids, 384, 47-54.

Höche, T., Ikeno, H., Mäder, M., Henderson G.S., Blyth, R.I.R., Sales, B.C., Tanaka, I. (2013), Vanadium L2,3 XANES experiments and first principles multielectron calculations: Impact of second-nearest neighbouring cations on Vanadium-bearing Fresnoites, American Mineralogist, 97, 665-670.


LeLong, G., Cormier, L., Ferlat, G., Giordano, V., Henderson, G.S., Shukla, A., Calas, G., (2012), Evidence of five-fold coordinated Ge atoms in amorphous GeO2 under pressure using Inelastic X-ray Scattering, Physical Review B., 85, 134202.

Cochain, B., Neuville, D.R., Henderson G.S., McCammon, C., Pinet, O., Richet, P. (2012) Iron content, redox state and structure of sodium borosilicate glasses: A Raman, Mossbauer and boron K-edge XANES spectroscopy study, Journal of the American Ceramics Society, 95, 962-971.


Cormier, L., Dargaud, O., Menguy, N. Henderson, G.S., Guinard, M., Nicolas, T., (2011) Investigation of the role of nucleating agent in MgO-SiO2-Al2O3-SiO2-TiO2 glasses and glass-ceramics: a XANES study at the Ti K- and L2,3-edges,Crystal Growth and Design, 11, 311-319.

Höche, T., Mäder, M., Bhattacharyya, S., Henderson, G.S., Gemming, T., Wurth, R.,  Russel, C., Avramov, I., (2011). ZrTiO4 crystallisation in nanosized liquid-liquid phase separation droplets in glass – A quantitative XANES study, CrystEngComm, 13, 2550-2556.

Nesbitt H.W., Bancroft, G.M., Henderson, G.S., Ho, R., Dalby, K.N., Huang, Y., Yan, Z., (2011), Bridging, Non-Bridging and Free (O2-) Oxygen in Na2O-SiO2 Glasses: An X-ray Photoelectron Spectroscopic (XPS) and Nuclear Magnetic Resonance (NMR) Study, Journal Non-crystalline Solids, 357, 170-180.


Richet, P., Henderson, G.S., Neuville, D.R. (2010) Thermodynamics: The oldest branch of Earth Science?. Elements, 6, 287-292.

Henderson, G.S., Soltay, L.G., Wang, H.M., (2010), Q speciation in alkali germanate glasses, Journal of Non-crystalline Solids, 356, 2480-2485.

Neuville D.R., Henderson G.S., Cormier L., Massiot D. (2010) Structure of CaO-Al2O3 crystal, glasses and liquids, using X-ray absorption at Al L and K edges and NMR spectroscopy, American Mineralogist, 95, 1580-1589.

Some interesting oddities:

Sokolov, I.Y., and Henderson, G.S., (2000), The height dependence of the image contrast mechanism when imaging in non-contact AFM, Surface Science Letters464, L745-L751., 267-272.

Sokolov, I.Y., and Henderson, G.S., (2000), Atomic resolution imaging using the EDL technique: Friction versus Height Contrast Mechanisms, Applied Surface Science157, 302-307.

Sokolov, I.Y., Henderson, G.S., and Wicks, F.J., (2000), Model dependence of simulations in AFM contact mode, Surface Science, 457, 267-272.

Sokolov, I.Y., Henderson, G.S., and Wicks, F.J., (1999), Pseudo Non-Contact AFM imaging? Applied Surface Science, 140, 362-365.

Sokolov, I.Yu., Henderson, G.S., and Wicks, F.J., (1999), Angstrom Resolution Imaging of the {001} Anhydrite Surface: Theoretical and Experimental Evidence for “True” Atomic Resolution, Journal of Applied Physics86, 5537-5540.

McConnell, J.C., and Henderson, G.S., (1993), Ozone depletion at polar sunrise, 89-103, in Tropospheric chemistry of ozone in the polar regions, ed., H Niki and K.H. Becker, NATO ASI series 1; Global Environmental Change, Vol 7., 425pp, Springer-Verlag.

McConnell, J.C., Henderson, G.S., Barrie, L., Bottenheim, J., Niki, H., Langford, C.H., and Templeton E.M.J., (1992), A new mechanism for Arctic O3 depletion at polar sunrise: Heterogeneous photochemical bromine production, Nature355, 150-152.

Henderson, G.S., McConnell, J.C., and Evans, W.F.J., (1990a), The effects of initial active chlorine concentrations on the Antarctic ozone spring depletion, Journal of Geophysical Research95, 1899-1908.

Henderson, G.S., McConnell, J.C., and Evans, W.F.J, (1990b), Model studies of the oxidation of light hydrocarbons in the troposphere and stratosphere, Atmosphere-Ocean28, 48-89.

Henderson, G.S., McConnell, J.C., and Evans, W.F.J., A comparison of model calculations and measurements of acetone in the troposphere and stratosphere. Journal of Atmospheric Chemistry8, 277-298, 1989.

Evans, W.F.J., Boville, B.W., McConnell, J.C., and Henderson, G.S., Simulation of the Antarctic ozone hole with chemical and dynamical effects. Geophysical Research Letters13, 1323-1326, 1986.



konya güvenlik sistemleri